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The velocity potential for a simple source moving in a straight line at constant 
depth in a two-layer ocean is obtained by the Fourier transform method. It 
is used to  develop a formula for the wave-making resistance of a ‘thin’ ship for 
both surface and internal waves. An asymptotic expansion is used to delineate 
quantitatively the internal wave system. It is shown that at  speeds less than the 
critical speed transverse and divergent wave systems are excited, while at  speeds 
greater than the critical internal wave speed only the divergent wave system is 
excited. Examples of the shape of wave crests and of wave heights are given. 

1. Introduction 
Free waves in a homogeneous fluid with a free surface are characterized by a 

maximum vertical displacement at the surface. In  deep water, the vertical 
displacement of a water particle decreases exponentially downward. In  strati- 
fied water, other types of free waves may occur which are called ‘ boundary waves’ 
or ‘internal waves’. They are characterized by having their greatest vertical 
displacement in the interior. 

The ocean has a vertical density structure. There often is a surface layer 
(usually quite homogeneous) which is separated from the denser fluid below 
by a more or less narrow thermocline region. Such layers may be caused by 
heating, cooling, mixing, and the advection of water masses. 

The excitation of waves on the surface of the ocean by a displacement ship 
has been treated by various approximations. A comprehensive survey is given 
by Lunde (1951). In practically all cases the ocean is treated as if it  were homogen- 
eous; there is very little early literature (see Lamb 1916) on the excitation of 
internal waves. There has been work on the comparable situation in the strati- 
fied atmosphere, e.g. the work of Kochin (1949) and Warren (1960). Ekman 
(1904) has shown experimentally that a ship moving near the critical internal 
wave velocity (velocity of waves for which the wavelength is large compared to 
the thickness of the layer) strongly excites internal waves if the keel depth is 
about equal to the thickness of the layer. The transfer of energy from the ship to 
the internal waves is manifested by an increase in resistance to the motion of the 
ship. Under suitable circumstances, this increase of resistance can be manifold. 
The phenomenon is referred to as ‘dead water’. 

The author (1958) developed a formula for the resistance of a ‘thin ship’ 
in a two-layer ocean. An algebraic error invalidated the results. One purpose 
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of this paper is to present the correct results. Sretenskii? (1959) used a some- 
what different method of analysis to derive such a formula. It can be shown that 
the results are exactly equivalent. 

Another aspect of ship-excited waves is their peculiar pattern. For a homo- 
geneous ocean, an explanation and treatment of this effect was first given by 
Kelvin (1887); it has also been treated by many others, e.g. Hogner (1923) and 
Peters (1949). The pattern of the corresponding internal waves formed in a two- 
layer ocean is delineated in this paper. 

2. Motion of a simple source at constant speed, direction, and depth 
in a two-layer ocean 

For simplicity, a two-layer model of the ocean will be considered. Perturbation 
theory (see Lunde 1951) can be used to replace a ‘thin ship’, to the first approxi- 
mation, by a distribution of simple sources over the centre-plane section. The 
velocity potential for a simple source in a homogeneous fluid with a free surface 
has been determined in several ways; it is occasionally called a Havelock source. 
The objective of this section is to find the corresponding Green’s function for a 
two-layer ocean. The mathematical statement of the problem is given in the 
next few paragraphs. 

Fix a co-ordinate system in space such that the (x, 2)-plane lies in the undis- 
turbed interface between a layer of fluid of density p, and thickness h, lying on 
another fluid of density p’ = Ap+p, of semi-infinite extent. Consider a simple 
point-source moving with constant velocity, c, in the direction of increasing 
x at a constant distance, f, above the undisturbed interface. If the layer were of 
infinite extent, the potential would be 

assuming the source of strength m to pass over the origin at  t = 0. 
If the source is assumed to have started at x = - m, then at  any finite distance 

from the origin, the potential $, in the layer, the potential #‘, below the layer, 
the pressure, p ,  the displacement of the free surface, qs, and the displacement of 
the interface, T ~ ,  are of the form 

$ = m/rl, r; = (x-ct)2+ (y-f)2+22, (1) 

} (2) 
$ = $(X-Ct,y,z), p = P(x-c t ,y , z ) ,  7 s  = rs@-ct,y,2), 

$’ = $(x -c t , y ,4 ,  Ti = Ti(X-Ct,y,2). 
Now consider a co-ordinate system moving with the source such that the axes 
(2,  jj, 2 )  are parallel to the stationary axes. Let 

- 

x = X-ct, jj = y ,  x = 2, t = t. (3) 
In  the fixed co-ordinate system, the potentials $ and $‘ satisfy Laplace’s 

equation, the former everywhere in the layer except at the source, and the latter 
everywhere in the lower fluid. The potentials $ and $r in the moving co-ordinate 
system still satisfy Laplace’s equation, i.e. 

(4) 
m 

rl 
A&, = 0, 3 = $ h i - - - ,  

7 The author is indebted to the referee for having Sretenskii’s work brought to his 
attention. 
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where the second equation defines which is assumed to be regular, and 

A$‘ = 0. ( 5 )  

The boundary conditions can be linearized by a perturbation method. They 
become, in the moving co-ordinate system, 

(6) 

(7) 

(8) 

- 
&(X, h, Z )  + c2g-I$Fi(x, h, Z )  = 0, 

pc2$&, 0,X) +pg&(Z, 0,Z) = p’c2&(Z, 0, Z )  +p’g$@, 0, Z), 

q5&Z7 0,Z) = f$Z(Z, 0,Z) = -crz, 
- - 

where (6) is the combination of the kinematic and dynamic conditions at the 
free surface (and g is the acceleration of gravity), (7)  is the dynamic condition 
a t  the interface, and (8) is the kinematic condition at  the interface. Also, $’ 
satisfies the condition Iim = 0, (9) 

g+-m 

and the condition a t  infinity has the form 

lim I, = lim ?ji = 0. (10) 
Z+m 2-+m 

There is no restriction placed on the 7’s for x -+ - co except that they be 
bounded. In  sequel, only the moving reference-frame is used and so the bars will 
be dropped. 

The solution of the problem is obtained by application of the Fourier trans- 
form method.? The Fourier transform of f$b is 

and the inverse transform is 

$ b ( x , x )  = $b(c, c)exp{i(b+cz)}d~dc* 

The transform of (4) is 

Let c2 + c2 = a2. This has the fundamental solution 

Similarly 

Because of condition (9), B‘ = 0. 

$buy - (6’ f c2) 6 b  = O* 

$b = 4 6 ,  5) + B(6,C) e--ya. 

6’ = A’(<, 6) eua +B’(6, 5) e-ga. 

The Fourier transform of the surface boundary condition (6) is 

t The method is similar to that used by Timmm & Vossers (1953). 
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where ' - ' is used for y > f and ' + ' is used for y < f. Thus the transform of 

(x2+  (y-f)2+22)--6 

is .F(exp - [x2+ (y - f ) 2 +  91) = w-l exp { w(y -f)}. (16) 

$bu(<? O, C )  +me-wr = &g(<, O, 61, (17) 

(18) 

The Fourier transforms of the boundary conditions (7) and (8) are 

-pc2t?$b(<, 0, C) +pg$bu(<,  o ,< )  -pc2a-1<2me-"f+pgme-"f 

= -p'c2F$'(<, 0, C) +p'g&u(5, 0,o.  

Substitution of (12) and (13) into (14), (17), and (18) gives a set of three simul- 
taneous equations in A ,  B, and A'. Solutions are obtained and substituted in (12) 
and (13) to give $6 and 6'. The inverse transform of $b and 6' then gives the for- 
mal solutions, q50 and &,, which are not the complete expressions for $ and #', 

where 

P = ( c 2 P  + gw) [ - (p' + p)  c2C2 + (p' - p)  g a l  exp { - (h -f - y) w} 

- ( C 2 t 2  + gw) ( C 2 F  - 9 4  (p' -p)  [exp { - (h  +f- y) w} + exp { - (h -f+ y)w)I 

+ (CZE2 - 9m)2 (P' - P )  exp {(h -f - y) 4, 
4? = ~ ( c ~ 5 ~ - g w ) { [ ( p ' + p ) c ~ < ~ -  (p ' -p)gw]eh"+ ( ~ ~ < ~ + g w )  (p ' -p)e+') ,  

R = (c2<2 - gw) exp { (h  -f) w) - (c2<2+ gw) exp { - (h -f) w). and 

When expressed in polar co-ordinates, which are defined by 

g = wcose, 6 = ashe ,  
equation (19) becomes 

M ( 0 ,  a) cos (ax cos 8)  cos (wz sin 8) 
(b0 = ~ + ~ J o % 8 J -  rl 7rc2 0 (m - wo) g(8, a)  dw, (22) 

where 

M ( 8 ,  W )  = sec2 O{(C% C O S ~  8 + 9)  

x [ - (p' t p )  c2w cos2 0 + (p' -p )  g] exp { - (h -f- y) w} 

- (p' - p)  (czw cos2 8 - g) (c2a cos2 8 + g) exp { - (h +f- y) w} 

+ (p' - p )  (c2 a 0082 8 - g)2 exp {(h -f - y) a} 

- (p ' -p )  (c2wcos28+g) (c2wcos28-g)exp{-(h-f+y)w}, (23) 

g(0, w) = cos2 8(wp'c2 Gosh ha + wpc2 sinh hm) - (p' -p )  g sinh h w. (25) 

To check the condition (lo), it will be necessary to find the limit of this integral 
as 1: + m. To do this, first note that the singularities of the integrand lie on two 

w0 = gc-2sec28, (24) 
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curves, w = w,, where a, is given by (24) and a = w1, where wirl is given by the 
implicit relation 

The curves do not intersect. They are shown roughly in figure 1. The second of 
these curves behaves in a manner dependent on F, the ratio of the speed to the 
critical internal wave speed, i.e. 

g(@,.rrr,) = 0. (26) 

F2 = c2p’/Apgh, Ap = p’ -p. (27) 
Now consider the integration with respect to w for a fixed value of 0 and for 

large x. It is clear that the interval of integration can be broken into two parts: 
Iirl from 0 to w2 and 1, from a2 to 00, where a, > w2 > wl. 

e= o 
FIGURE 1. Singularities in integrand in (12). 

, Thelimitoftheintegralovereachinterval asxgoes tocomaynowbeevaluatedt 
by means of the Fourier single-integral limit theorem 

(38) 1 &-r[f(S, + 0) +f(so - 0)l (a < $0 < 61, 
&rf(a+ 0) (a = so), 

+?Tf(b-O) (b  = so), 

0, a > so or b < so. 

l imSbf(s )  sin [ t (5  - 8011 i 
= i, t - t m  a s-so  

The limit is zero in each case if the cosine function occurs instead of the sine 
function in (28). 

wave problems is due to John V. Wehausen. 
The application of this theorem to the question of the condition st infinity in ship 
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For the interval that includes the singularity at  a,, only the first term in 
M(6, w )  gives a non-zero contribution. That term can readily be written in 
a form such that the foregoi,ig theorem applies. This part of the integral then 
gives 

Since this term is not zero, #, as given by (22) violates the condition at x = + co. 
This can be rectified by subtracting this expression from ( 2 2 ) .  It is clear that this 
expression satisfies Laplace’s equation; together with the other parts of the 
solution, it satisfies the boundary conditions. 

The integral over the interval that includes the singularity at  w, can also be 
put into a form such that the theorem applies, although the fact that w, is given 
only implicitly by g(0, .a,) requires special treatment, This part of the integral 
then gives 

9 (30) 
m h N(8, w )  sin (zw, cos e)  cos (zw, sin 0) d6 

- lim I, = - c p / a  _ _ _ _ _ _ _ _ ~ ~  
x-+w (a, - wo) G(07 W l )  

where a = cos-l(F-l), F 2 1; a = 0, F < 1, 

G(0, w,) = p’c2 cos2 0 cosh hw, + hp‘wlc2 cos2 8 sinh hw, 
+ hw,pc2 cos2 6 cosh h a ,  + pc2 cos2 8 sinh hw, 

- h(p’ -p )  g cash “1.  

Since this term is not zero, it  too is subtracted from ( 2 2 ) .  Thus the total expression 
for the velocity potential in the layer, 

# = #o-  lim 1,- lim I,, 
x+w x+m 

is obtained from ( 2 2 ) ,  (29), and (30). 

3. Forces on a thin ship 
Consider a ‘thin’ ship in steady motion having a speed c in the direction of 

the x-axis, the co-ordinate system being the same as that used previously. For 
a deep ocean, the linearized equations have been used? to demonstrate that the 
ship may be replaced effectively by a distribution of sources over the centre- 
plane section whose strength is given by - & ~ - 1 [ ~ ( a ,  p), where t h e  shape of the 
hull is given by {(x, y). This leads to a velocity potential 

where So is the area of the centreplane section, and H is the potential for a 
‘Havelock source). The resistance, R, to the motion of the ship is then given by 

where, it  turns out, some of the terms in Q,r make no contribution. 

t See Lunde (1951). 
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The same procedure may be applied to the case of B thin ship in a two-layer 
ocean. Again, the ship may be replaced effectively by a distribution of sources 
over the centreplane section whose strength is given by - $~n-~Q(a,  p), where 
the shape of the hull is given by 6(x, y). The velocity potential is 

y, 2 )  = ]Iso - gcv-1 ca(a, P )  +(x> y, 2 ;  a, P, 0) dadp, (33) 

where $(x, y, z ;  a, p, 0) is given by (22) minus (29) and (30), with the following 
modification. The source had been taken at  (0 ,  f ,  0). We now replace f by p and 
x by (x - a). The resistance to the motion of the ship is given by substituting 
this into (32). 

The contribution to  R from the x-derivative of the part of $ given by (22) is 
zero. Thus 

dB. (34) 
ax a, cos 8 M(B, a,) cos [(x -a) w, cos 81 L (w1- wo) cce, a,) 

If h is made infinitely great, the second term goes to zero, and the first term 
goes over into the well-known Michell's integral for the wave-making resistance 
of thin ships 

where here the origin lies in the undisturbed free surface. Thus (34) is a generaliza- 
tion of Michell's integral to the case of the two-layer ocean. 

4. The asymptotic evaluation of the velocity potential of the ship's 
internal wave system 

The results given above for the velocity potential due to a moving simple 
source are so complex that a general evaluation of the integrals does not appear 
to be possible. However, an asymptotic solution for large negative values of x 
would be useful in delineating the wave pattern far aft of the moving source. 

The double integral in (22) is first reduced (asymptotically) to a single integral. 
The method used is exactly the same as that used to obtain (29) and (30). Note, 
however, that large negative values of the parameter, x, are considered. This 
changes the sign of the limits given by (29) and (30) and further leaves error terms 
of Ox-,. Thus, to this degree of approximation, for x < 0, 
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The first integral has been evaluatedfor z = 0 (i.e. on the track) bythe method of 
steepest descent, but the details will not be presented here. The result of the 
evaluation showed that the wavelength on the axis was exactly the same as that 
for a homogeneous ocean, and that the amplitude was only slightly different. 
The first integral will not be considered further here. 

The second integral term in (36) describes the internal wave mode for large 
negative values of x. The asymptotic evaluation is difficult because w1 is not 
given as an explicit function of 8; there is only the implicit relation (26). Simpli- 
fication is achieved if (26) is used to transform the integral so that the variable of 
integration is w. It helps further if polar co-ordinates are used for the point of 
observation, i.e. 

The second integral in (36), (call it lz), has the form 

(37) x = Rcos y ,  z = Rsin y. 

12(R, y )  = Im J g(w) [exp {iRh+(w)} + exp (iRh-(w))] dw, (38) 
b 

where b = 0, F 2 1;  b = wl (0 ) ,  P < 1, and where g(w) is continuous and the 
h(w)’s have non-zero second derivatives almost everywhere in the interval of 
integration, and q ( 0 )  is obtained from (26) with cos 8 set equal to unity. 

It is well known that the major part of the value of the integrals in (38) arises 
from the vicinity of the end-points and from the vicinity of those w at which 
h(w) is stationary, i.e. h‘(w) = 0; the first-order approximation of the contribu- 
tion of the stationary points, being of O(R-*), is more important than the con- 
tribution from the end-points which are of O(R-l). If there is a stationary point, 
the first approximation is 

W, Y )  - Im [2n/Rh’;(wz)I+ g(wz) exp {itRh+(q) + an]} 

+ Im [2n/Rh”(w3)]$ g(w3) exp (i[Rh-(w,) +&7]}; (39) 

here w2, w3, are the stationary points. The stationary points are given by the 
solutions of 

A sinhZ+Z P2ZA-sinhZ 4 
~- __ ( sinh2 ) ’1 2P2ZA2 - A  sinh 2 - Z 

(2 = hw). 

T tan y = 

A = coshZ+(p/p’)sinhZ 

The right side of (40) is real and non-negative for all values of 2 in the interval 
of integration. Hence, for all Z there is a y for which (40) is satisfied. For h,, 
the upper sign is used and y is the second quadrant; for h-, the lower sign is used 
and y is in the third quadrant. The two y’s are symmetrical about n, and the two 
terms in (39) are equal for these values of y. Thus only one of the terms in (39) 
need be computed; let it be the first. 

The solution of (40) is plotted in figure 2 for F = 4. The value of y is rr at the 
lower limit of the range of 2. As 2 increases, y decreases to a minimum, then 
increases and becomes asymptotic to n as Z -+ co. The minimum point on the 
curve defines a critical angle, yc = 2.7933. For y smaller than ye, there is no 
solution, and hence no stationary point. Thus for yc > y, q5 is O(R-’). For 
ye < y 6 n, there are two solutions to (40), and hence two contributions to 4 
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of the form (39). These represent waves (as will be emphasized later), and hence 
there are two sets of waves for this case. This picture is true for quite a range of 
P for which calculations have been made, (see figure 4 for yc as a function of P), 
end is probably true for all P < 1. 

The solution of (40) is plotted in figure 3 for F = 2. The value of ye is 2.618 for 
Z = 0, increases monotonically with increase in 2, and it becomes asymptotic 
to  n for large values of 2. Thus for y < ye, q5 is O(R-1) while within the sector 
q5 is O(R-4). Note that for yc < y < n there is only one stationary point and, hence, 

30 

20 

FIGURE 2. Stationary points, 2, and non-dimensionel displacement factor yvs  y for P = $-, 
p/p' = 0.999, f / h  = 0.1. - Non-dimensional displacement factor, r(P, p/p', f/h, y).  
_- -  Stetionaxy points 2. 

FAsymptotic to II 15 
I 

- I  
\ 

- 1  

- 10 
- t  I 
-? 1 

'. 
265 ---_ ---- 

Y 
FIGURE 3. As for figure 2 ,  but with F = 2.  

2 

- 5  
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only on0 set of waves propagates. This also has been verified for a wide range of 
values of F > 1. A remarkably simple expression can be obtained from (40) for 
yc whenF > 1, 

7~ - yc = sin-1 (F-1). (41 )  

This is just the Mach shock angle formula ! This is also plotted in figure 4. 
Let the symbol 2 now stand for a stationary value of 2. The first approximation 

of the contribution of a stationary point to the velocity potential of the internal 
wave is 

1 (sinh 2 + Z cosh 2) 
.--- 

2 (2 sinh 2)g - 
x -  ( ~ ~ ~ 2  [ 2A cosh 2 (2 sinh Z)* - ( A  sinh 2 + 2) 

(F2Z2A - Z sinh Z)& (2F2A2 + 4F2ZAB - 2A cosh 2) 
sin y 

+ F2Z2A - 2 sinh 2 

(2F2ZA + F2Z2B - sinh Z - 
2(F2Z2A - 2 sinh 2)a 

- (2F2Z2A2 - A  sinh 2 - 2) 

x ( - ( p c + p ’ ~ )  c exp [ - ( 1 - h. f - i) Z] - ( p  

+(p’-p)D2exp 

x [D cos 0 sin tYp’c2ZA]-l exp {i[RZ cos (0 -y)/h + ;n]}, (42)  
where 

c2 sinh 2 
C = ~ 

c2 sinh 2 
F 2 A  F2A +gh7 D = -- gh. 

P 
P 

B = sinhZ+,coshZ, 

Here the angle 0 is computed from ( 2 6 ) ,  with 2 taken at  the stationary point. 
For F < 1, there would be two such terms, one for each stationary point at a 
given y ;  for F > 1, there would be only one term. 

5. The evaluation of the displacement of the interface 
We recall a relation at the interface 

$&, 07 4 = - CY, .  ( 43 )  

The expression for 7, the displacement of the interface? can readily be obtained 
for values of y restricted to yc 6 y < 7r. The solutions can be written in the form 

t The displacement of the interface due to the surface mode will not be considered. 
Thus, only the first-order contribution to the velocity potential from the stationary points 
in I ,  aa given by (42) is used. 
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where 

= (nPA)* (ZA s i n 6 ~ o s ~ B ) - ~  

1 x ( z?Lz [ 2A cosh Z(Z sinh Z)h - ( A  sinh Z + 2) sinh 2 + Z cosh 2 
z(Z sinh Z)* 

[ (P2Z2A - Z sinh 2): (2F2Az + 4F2ZBA - 2A cosh 2) 
sin a 

+P222A--ZsinhA 

( 2F2ZA - F2Z2B - sinh Z - Z cosh 2)  -4 
2(P2Z2A - Z sinh)* I1 -(2F2ZA2-AsinhZ-Z) 

I x exp (( 1 -f) 2) + Cexp( - 2) sinhZ 

2.01 

I I 

F - 
I 

0 5  1.8 
1.7 I I I I l l 1  I I I I I I I I ]  

0.2 0.3 0.4 06  0.8 1 2 3 4 5 6  8 1 0  0.1 

FIGURE 4. Features of q(F,  p/p’,.f/h, y )  vs F .  Curve A gives the value of ye, curve B the 
value of y for which q is a minimum, and curve C that for which 9 is a maximum. 

is a non-dimensional displacement factor which is a function of the non- 
dimensional parameters F, p/pf ,  f/h and the variable 2. This non-dimensional 
displacement factor has been computed and is plotted us 2 in figures 2 and 3 for 
P = 8 and F = 2, withp/p‘ = 0.999 and f/h = 0.1. On the same graphs is plotted 
yvs Z for the stationary values of 2. 

Note that ~ ( * , p / p ’ ,  f/h,Z) hasasingularityat yc because h”(y,)iszero. ForP= 2, 
y(F, p/p’,f/h, 2)  is well behaved for all 2. Here, there is a maximum at y = 3.075 
and a minimum at y = 2.807. 

Computations for a wide range of ratios of speed to the critical internal wave 
speed, i.e. F, are summarized in figures 4 and 5. In figure 4 the critical angle is 
plotted as a function of F for a range of F < 1, and for 1 < P < 10. Note that as 
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F increases from a small value to unity, the half-angle of the wedge, n- yc, 
within which the sensible waves are contained, increases; a t  F = 1, it  is in, 
and for F > 1 it  obeys the law: 7 ~ -  yc = sin-l (F-l). Also plotted in this figure 
are the positions of the maxima and the minima of the non-dimensional ampli- 
tude as functions of F. In  figure 5, the amplitudes of the non-dimensional ampli- 
tude at the maxima, minima, and boundary points are plotted as functions 

40 

35 

30 

25- 

15 

10 

- 

- 

- 

t 
2 0 - t  

\I? 
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- 
%I& 
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- 

5 -  

b I I t I I I I I 
0 1 2 3 4 5 6 7 8 9 1  

F 

40 

35 

30 

25 

20 

15 
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0 

FIGURE 5. Amplitudes of maxima, minima and boundary points of 
w, P/P’,”f/h, Y) 21s F.  

of F .  Note the increase with F ,  which is surprising in view of the commonly held 
notion that the ‘dead water’ effect is greatly decreased for F even a small amount 
larger than unity. 

Consider the argument of the oscillatory factor in (44). It can be written 

RZ COB (0 - y ) /h  + 4 7 ~  = 2nR/h(Z) + fn, (45) 

from which it is clear that the displacement, 7, along a ray, y = constant, is 
wavelike. If there are two stationary values of Z for a given y, there are two 
terms in (44), and hence two A’s. Thus for F < 1, there are two wave systems. 
This can be brought out further by delineating the position of the crests. This is 
done by setting 

RZ cos (0 - y ) /h  + in = 3nN or 2nN + &r, (4% b )  

for the cosine case and the sine case respectively, in (44), and where N is an 
integer. Here, Z is the stationary value for the given y ,  and 8 is a function of Z 
as previously given. Computations have been made using (26) and (40) in (46) for 
the same set of parameters as in figures 2 and 3. The results for F = are shown in 
figure 6 for four values of N .  That there are two sets of waves is clear; they are 
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quite similar to the sets of transverse waves and divergent waves caused by a 
ship in an infinitely deep, homogeneous ocean. The wavelength of the transverse 
wave on the track is such that a plane wave having that wavelength travels a t  
one half the critical internal wave speed. But this is just the assumed speed of the 
simple source. Note that the crests of the two different waves do not meet at  the 
edge of the wedge. There is a singularity in the displacement due to the break- 
down in the usual first term in the expansion by the method of stationary 

9 

s. 6 
5, 

I 
3 

'0 3 6 9 12 15 18 21 24 27 30 
- x/h 3 

FIGURE 6. Internal wave crests for F = +, p/p' = @999,f/h = 0.1. 
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FIGURE 7. Internal wave crests for F = 2, p/p' = 0.999, f / h  = 0-1. 

phase. A modification of the computation in the vicinity of this point (it would 
be almost intractable) would probably show a gradual transition in the wave front 
here. The results for P = 2 are shown in figure 7. Here there is only one set of 
waves, the divergent waves. 

From (44) it is clear that the displacement for any point of the crest is propor- 
tional to the product of the factors R-i and q(P,p/p',  f / h , Z ) .  To visualize the 
amplitude of the crest, an interval, proportional to this product, perpendicular 
to the curve of the crest at each point on the crest is drawn, and the end-points 
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are connected. In  figure 8 this is done for a single crest ( N  = 6) for F = +, and in 
figure 9 this is done for a single crest ( N  = 6) for F = 2. In  each case, a three- 
dimensional sketch is also given to give a clearer picture of the amplitude of the 
crest. 

FIUURE 8. Height of internal wave crest for P = 4, p/p' = 0.999, f/h = 0.1. 

RIh 
FIGURE 9. Height of internal wav0 crest for F = 2, p/p' = 0.999, f/h = 0.1. 

6. Discussion 
An integral formula for the wave-making resistance has been developed. 

It would be worthwhile to use this result to show how the resistance varies with 
speed. In  particular, it would be of interest to see if there is a sudden decrease in 
resistance with speed at  the critical internal wave velocity. 

The displacement of the interface due to the internal wave mode has been 
described in some detail. It would also be worthwhile to treat in detail the 
surface wave mode to see what effect the stratification of the water has on it. 
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